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A FRONT-TRACKING ALGORITHM FOR ACCURATE
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Modélisation en Mécanique, CNRS URA 229, Uni6ersité Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France

SUMMARY

A front-tracking algorithm for the solution of the 2D incompressible Navier–Stokes equations with
interfaces and surface forces is presented. More particularly, attention is focused on obtaining an
accurate description of the surface tension terms and the associated pressure jump. The stationary
Laplace solution for a bubble with surface tension is considered. A careful treatment of the pressure
gradient terms at the interface allows the reduction of the spurious currents to machine precision. Good
results are obtained for the damped oscillations of a capillary wave compared with the initial-value linear
theory. A classical test of Rayleigh–Taylor instability is presented. Copyright © 1999 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

A number of methods have been developed in recent years for the solution of problems
involving moving interfaces in multiphase fluid flow. These methods can be divided into two
main classes depending on the type of grids used [1–4]. In the first class, the interface is treated
as a boundary between elementary domains. This approach allows a precise representation of
the interfacial jumps conditions, at least in principle. However, it requires deformable grids in
order to follow the motion of the interface [5,6]. The second class of methods uses fixed grids
to describe the velocity field but requires specific advection schemes in order to preserve the
sharpness of the interfacial front. These advection schemes may in turn be divided into two
groups, either implicitly or explicitly representing the interface. The implicit methods are
sometimes labeled front-capturing in analogy with the situation in computational gas dynam-
ics, while the explicit methods are often called front-tracking. Among the implicit methods are
volume of fluid (VOF) and level sets. Modern VOF advection schemes yield good results and
ensure an accurate conservation of mass [7–9]. Level set methods are easy to implement and
are similar in their properties to VOF methods [10]. Both rely on an implicit description of the
interface, given through phase functions (i.e. volume fraction for the VOF method or distance
function for the level set method). In the second group, tracking methods, such as interfacial
markers, use a more explicit discretization of the interfacial discontinuity. They are somewhat
more complex to implement, but give the precise location and geometry of the interface [11,12].
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All these methods provide good solutions to the problem of interface advection; however,
accurate representation of surface forces (i.e. surface tension membrane effects, . . . ) remains a
problem when using fixed grids. A striking feature of these methods (including lattice gases
[13]) are the so-called spurious currents shown in Figure 1. These numerical artifacts result
from inconsistent modeling of the surface tension terms and the associated pressure jump. In
some cases they may lead to catastrophic instabilities in interface calculations. More generally,
this poses the problem of obtaining an accurate description of the steep gradients occurring at
the interface.

These problems are often compounded by the presence of high density ratios. Many
multiphase flow problems of interest involve fluids with very high ratios of densities and
viscosities simply because mixtures of liquids and gases are the most common fluids composing
multiphase flows. Thus, experiments often involve air bubbles in water, water droplets in air,
wave breaking, etc., which are difficult or impossible to address with current multiphase flow
computational techniques. Moreover, with such fluids, surface tension effects are usually large
compared with viscous damping. In these cases, the effect of the unbalanced forces acting on
the interface not only reduces the accuracy but can lead to spurious currents [14], which create
oscillations strong enough to destroy the interface. The spurious currents are therefore more
than just a numerical inaccuracy but are a real limitation of methods used on fixed grids.

This paper presents a front-tracking method for the solution of the two-dimensional
incompressible Navier–Stokes equations with interfaces and surface effects. The authors will
more particularly investigate the accuracy of the numerical representation of the surface
tension and of the associated pressure jump. The following section describes the general
scheme used to solve the Navier–Stokes equations. The next section gives a detailed descrip-
tion of the front-tracking algorithm and in the final section, some test cases investigating the
numerical accuracy and convergence properties are presented.

Figure 1. Spurious currents around a stationary bubble. The method used for the interface advection is a VOF
scheme.
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2. GENERAL DESCRIPTION OF THE METHOD

2.1. Basic equations

The authors seek to solve the incompressible Navier–Stokes equations with varying density
and surface tension. The momentum and mass balance equations are

r((tu+u ·9u)= −9p+9 · (2mD)+skdsn+rg, (1)

9 ·u=0. (2)

The former may be written in conservative form

(ru
(t

+9 · (ru�u)= −9p+9 · (2mD)+skdsn+rg, (3)

where u= (u, 6) is the fluid velocity, r=r(x, t) is the fluid density, m=m(x, t) is the fluid
viscosity, D is the rate of deformation tensor with components Dij= ((iuj+(jui)/2. The surface
tension term is considered to be a force concentrated at the interface, s is the surface tension
coefficient, k the curvature of the interface, ds a distribution concentrated on the interface and
n is the unit normal to the interface. In the case of two immiscible fluids, a characteristic
function x may be defined that is equal to 1 in phase 1 and 0 in phase 2. Then x and n are
related by 9x=nds. In the absence of phase change, x simply follows the fluid motion and
thus satisfies the advection equation:

(x

(t
+u ·9x=0. (4)

Density and viscosity are attached to the phases, and thus can be expressed as functions of x

r=xr1+ (1−x)r2, (5)

m=xm1+ (1−x)m2. (6)

Alternately, the equations of motion may be written in jump condition form. Jump conditions
appear when one investigates Equations (1) or (3) in the neighborhood of the singular surface
S. This leads to the tangential stress condition

[mt ·D ·n]S=0, (7)

where the notation [· ]S represents the jump of a quantity across the surface S. Also obtained
from (1) or (3) is the normal stress condition

[n · (−pI+2mD) ·n]S=sk, (8)

while the usual assumption of continuity of velocity leads to

[u]S=0. (9)

Away from the interface, Equation (1) takes the usual form

r((tu+u ·9u)= −9p+m92u. (10)

The normal stress condition (8) leads to the famous Laplace law for a spherical interface of
radius R in undeformed flow:

[p ]S=
2s

R
. (11)
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Figure 2. MAC discretization of the pressure, volume fraction, momentum and velocity components.

2.2. The Na6ier–Stokes sol6er

A momentum-conserving formulation of the Navier–Stokes equation is used. The solution
technique is close to the one initially developed for the SURFER code [14]. It is based on an
explicit projection method [15]. The pressure, volume fraction, momentum and velocity
components are discretized on a uniform Cartesian mesh (Dx=Dy=h) using a staggered
marker and cell (MAC) [15] distribution (Figure 2). If you associate the control 6olumes Vx and
Vy of Figure 3 to the components ru and r6 of the momentum, you can write the integral of
(3):

(

(t
&

V
ru dx=L(u, x)−

7
(V

p dS, (12)

where

L(u, x)= −
7
(V

ru�u ·dS+
7
(V

2mD ·dS+
&

V
skdSn dx+

&
V

rg dx. (13)

Actually, Equation (13) is projected on the x-direction (resp. y) for the Vx (resp. Vy) control
volumes. The authors denote these control volumes with half integer indices, so Vx=Vi+1/2, j,
Vy=Vi, j+1/2. (In all these expressions, i, j are integers.) This allows the momentum variables
centered on the relevant cells to be defined

Figure 3. Control volumes for the ru and r6 momentum components.
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(rux)i+1/2, j=
1

�V�
&

Vi+1/2, j

rux dx, (14)

where �V�=h2 is the measure of the control volume V. Similarly, control volumes centered on
the pressure nodes have the form Vij. The discrete formulation of (12) is then obtained by
straightforward approximations of r and u at the center of the faces of the control volumes Vx

and Vy. Interpolations are performed as required. The values of m and r near the interface are
obtained by an approximation of the characteristic function x by the volume fraction

Cij=
&

Vij

x dx, (15)

with i, j integers or half-integers. Then, Equations (5) and (6) are approximated by

rij=Cijr1+ (1−Cij)r2, (16)

mij=Cijm1+ (1−Cij)m2. (17)

The discretization of the surface tension term 	V skdSn dx, which is the main topic addressed
in this paper, will be described separately in the next session. First, an outline is given of the
authors’ explicit projection method. It can be subdivided into four steps:

1. The interface is advected using the velocity field at time tn=nt, where t is the time step.
In this case, this is done using a Lagrangian advection of the markers. This defines the
approximation of characteristic function xn+1 at time tn+1. The volume fraction may then
be computed by quadrature.

2. A provisional solution (ru)* of the momentum at time (n+1)t is built using an explicit
discretization of (12)

(ru)*= (ru)n+tL(un, Cn+1), (18)

where Fn is the value of the function F at time nt, L is a discretization of the operator in
Equation (13) and x is approximated by C. A detailed description of this step may be found
in [16].

3. The authors then ensure the divergence-free character of the velocity field un+1. From
Equation (13) the effect of pressure on the momentum balance is

(rux)i+1/2, j
n+1 = (rux)i+1/2, j* −

t

�V�
7

Vi+1/2, j

p dSx. (19)

It is useful at this point to define the velocity fields in terms of the momentum fields

ux,i+1/2, j* = (rux)i+1/2, j* /rn+1, ux,i+1/2, j
n+1 = (rux)i+1/2, j

n+1 /rn+1, (20)

with a similar definition for the y fields. Equation (19) can thus be re-expressed in terms of
the velocity fields

ux
n+1=ux*−

t

rn+1�V�
7

Vi+1/2, j

p dSx. (21)

The authors want to satisfy the continuity equation in the form

9 ·un+1=0 (22)

at each point xi, j. This implies
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Figure 4. In the ‘method of tensions’ the contribution of the surface tension to the momentum equation is obtained
as the sum of two vectors tangent to the interface. First the direction of the vectors is determined from a spline
representation of the interface, then the sum of the two tangent vectors times s is added to the momentum balance

of the cell.

(x
� t

rn+1�V�
7

Vi+1/2, j

p dSx
�

+(y
� t

rn+1�V�
7

Vi, j+1/2

p dSy
�

=9 ·u*. (23)

Discretizing as before on the MAC staggered grid, this leads to the Poisson-like equation
for the pressure

9h ·
� t

rn+1 9hp (n+1)�=9h ·u*, (24)

where the 9h operator is the centered finite difference operator on the staggered grid,
defined as

9hp �x,i+1/2, j=
1
h

(pi+1, j−pi, j), 9hp �y,i, j+1/2=
1
h

(pi, j+1−pi, j). (25)

Although Equation (24) is used in the bulk, near the interface, there is need for a more
accurate discretization of (23), which will be discussed in Section 3.6 below. This equation
is solved efficiently using a multigrid solver [17–20].

4. The momentum and velocity fields at time (n+1)t are computed by Equation (19).

2.3. Interface and surface tension

Given a parametric description (x(s), y(s)) of the location of the interface, where s is the arc
length, you want to compute the source term due to the surface tension in the momentum
equation (13). If V is the control volume for one of the components of the momentum and AB,
the interface segment inside this control volume (Figure 4), the integral source term in (13) is&

V
skdsn dx=s

7 B

A

kn ds, (26)

which can be written using the first Frenet’s formula for parametric curves

s
7 B

A

kn ds=s
7 B

A

dt=s(tB− tA), (27)

where t is the oriented unit tangent to the curve. The integral source term due to the surface
tension is then the sum of the outward unit tangents at the points where the interface enters
or exits the control volume.
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3. FRONT-TRACKING ALGORITHM

In this section, a detailed description of the front-tracking algorithm is presented. The interface
is represented using an ordered list of marker particles (xi, yi), 15 i5N. A list of connected
polynomials (pi

x(s), pi
y(s)) is constructed using the marker particles and gives a parametric

representation of the interface, with s an approximation of the arc length. Both lists are
ordered and thus identify the topology of the interface.

3.1. Ad6ecting the points

The first step in this algorithm is the advection of the marker particles. A simple bilinear
interpolation is used to find the velocity inside cell Vi, j+1/2

u(x, y)=ui−1/2, j(1−x−y+xy)+ui+1/2, jx(1−y)+ui−1/2, j+1y(1−x)+ui+1/2, j+1xy,
(28)

where x and y are the co-ordinates of the point relative to the (i−1/2, j ) vertex. (Here and in
the remainder of Section 3, lengths are rescaled so that h=1.) The marker particles are then
advected in a Lagrangian manner using a straightforward first-order explicit scheme

xi
n+1=xi

n+tu(xi
n, yi

n) yi
n+1=yi

n+t6(xi
n, yi

n). (29)

Once the points have been advected, you need to reconstruct the parametric representation of
the interface.

3.2. Constructing the polynomials

The authors have chosen to use connected cubic polynomials with continuous first and
second-order derivatives. This type of curve is usually known as cubic splines [21–23]. The
parametric representation is often periodic as the interfaces are mostly self-connected (drops,
bubbles, periodic wave trains, . . . ).

They then need to choose a parameter s in order to interpolate the two sets of points (xi, si)
and (yi, si). A simple choice is an approximation of the arc length

si= %
i−1

j=1

[(xj+1−xj)2+ (yj+1−yj)2]1/2. (30)

The connection conditions for the interpolating polynomials lead to two pseudo-tridiagonal
systems Ba=c, one for each co-ordinate of the parametric curve, where B is a N2 matrix of
the form

B=Ã
Ã

Ã

Á

Ä

b1

a2

0
0

cN

c1

b2

· · ·
0
0

0
c2

· · ·
aN−1

0

0
0

· · ·
bN−1

aN

a1

0
0

cN−1

bN

Ã
Ã

Ã

Â

Å

, (31)

where the coefficients a1 and cN arise from the periodicity condition [22]. The solution of this
type of system can be reduced to the solution of two tridiagonal systems that are easily solved
using classical techniques [23]. Thus, the construction of the interpolating parametric spline
curve from the set of points (xi) requires the solution of four tridiagonal systems of size N2.
This can be done in O(N) operations. All the other operations of the marker algorithm deal

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 775–793 (1999)



S. POPINET AND S. ZALESKI782

with local computations along the interface. They are thus also of order N. The ratio between
the time spent in the marker algorithm and in the computations done on the bulk of the fluid
(the Navier–Stokes solver) is then of the order 1/N. As the domain size increases, the
proportion of computational time needed by the marker representation decreases. In practice,
the marker computation accounts for less than 10% of the time for a 642 mesh.

3.3. Redistribution

As the interface evolves, the markers drift along the interface following tangential velocities
and more markers may be needed if the interface is stretched by the flow. The authors then
need to redistribute the markers in order to ensure an homogeneous distribution of points
along the interface. This is done at each time step using the interpolating curve (x(s), y(s)). As
s is an approximation of the arc length, if a redistribution length l is chosen, the new number
of markers is Nnew=sN/l and the points are redistributed as (xi

new, yi
new)= (x(il), y(il)). l is

usually chosen as h, which yields an average number of one marker per computational cell.
Decreasing this length does not apparently improve the accuracy and in some cases leads to
instabilities. This is similar to the behavior of boundary-integral codes that also use arc length
parameterization, cubic splines and redistribution of nodes [24].

3.4. Estimation of the 6olume fraction

In the case of flows with varying density and/or viscosity between the phases, there is a need
to estimate the volume fraction C defined in Equation (15). Then, the authors create the new
volume fraction field corresponding to the new parametric interpolation of the interface. This
is performed as described in Appendix B.

3.5. Surface tension contribution to the momentum equation

Following the tension formulation (27), if the interface crosses a momentum control volume
boundary, the value of the parameter s for the intersection point is computed (using the same
procedure as above). The authors then add the relevant component of surface tension
contribution st, where t is the unit tangent to the curve pointing outward for the considered
cell: t=9 (x %/(s), y %(s))/(x %2(s)+y %2(s))1/2. As this computation is done once for the two
neighboring cells, the contributions of surface tension to the global momentum cancel to
machine accuracy. Thus, the sum of surface tension forces over a droplet or bubble is zero,
even if there are errors for the surface tension in a single cell.

3.6. Pressure gradient correction

For the staggered grid, the x-component of the integral contribution of the pressure gradient
is given by �(V p dS=h(pi, j−pi−1, j). For instance, consider an interface crossing the vertical
face BC of the control volume (Figure 5). There is a pressure jump either between pi, j and
pi, j−1 (case (a): EBBh/2), or between pi, j and pi, j+1 (case (b): EB\h/2). A better approxima-
tion of the integral 	C

B p dS can be obtained using the nearest pressure nodes

� if EBBh/2: 	C
B p dS=EBpi, j−1+ECpi, j.

� if EB]h/2: 	C
B p dS=EBpi, j+ECpi, j+1.

This can be viewed as a correction to the standard centered estimate. Define

� if EBBh/2: Ii, j [p ]=EB(pi, j−1−pi, j).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 775–793 (1999)
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� if EB]h/2: Ii, j [p ]= (h−EB)(pi, j+1−pi, j).

Then 	C
B p dS=hpi, j+Ii, j [p ]. Ideally, this ‘pressure-gradient correction’ should be applied

when solving the pressure equation (23). This would lead to a discretization of (23) in the form

9h ·
t

rn+1 9h(p (n+1)+I [pn+1])=9h ·u*. (32)

The authors have chosen a simpler approach, however, where the pressure-gradient correction
is considered as a source term in the right-hand-side of the momentum balance equation (13):

9h ·
t

rn+1 9hp (n+1)= −9h ·
t

rn+1 9hI [p (n)]+9h ·u*. (33)

This term is then computed using the pressure field at time nt. This is done in practice when
computing the surface tension contribution, which also requires the intersection point E. (It is
less accurate to use (33) instead of (32) but justified as the method gives good results for
difficult test cases.)

This pressure-gradient correction is probably the simplest choice available. However, several
other solutions exist and it would be interesting to assess their accuracy and convergence
properties. A simple extension is the choice of higher-order interpolation schemes on both sides
of the interface. The mean square interpolation proposed by Shyy et al. [3] would also be
applicable and could be used to obtain any term with rapid variations across the interface (e.g.
viscous terms for high contrasts of viscosity).

Figure 5. The pressure gradient correction for a MAC grid. The location of the interface relative to the pressure nodes
yields two cases: (a) EBBh/2, (b) EB\h/2.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 775–793 (1999)



S. POPINET AND S. ZALESKI784

Table I. Amplitude of the spurious currents around a circular bubble

�U �m/s Grid size1/Oh2 Diameter in �U �m/s
grid points

8.5E−6 162 6.41.2 3.76E−5
6.76E−6 32212 12.8 6.68E−6
5.71E−6 642 25.6120 10.7E−7
5.99E−6 12821200 51.2 11.5E−8

12 000 8.76E−6 2562 102.4 17.4E−9

Left-hand-side: independence of the non-dimensional maximum velocity with respect to
the Ohnesorge number on a 322 mesh. Right-hand-side: convergence to zero of the
non-dimensional maximum velocity with spatial resolution.

4. RESULTS

This section presents some simple test cases intended to illustrate the ability of this method to
cope with high surface tension flows without loss of accuracy. All the computations have been
done on an IBM RS6000/370 workstation. Typically, one time step on a 1282 grid requires 0.7
s, the most time consuming procedure being the multigrid solver.

4.1. Stationary bubble and spurious currents

An interesting test case is the verification of the stationary Laplace solution for a circular
bubble or droplet. As shown previously, in principle a stationary solution exists for the current
method and consequently Laplace’s law should be verified exactly. However, one cannot
interpolate a circle (which is C�) exactly using a parametric spline curve (C2 in this case) and
small differences will subsist. Two questions follow, the stability of this approximate solution
and its numerical convergence to the theoretical solution.

In the absence of externally imposed velocity, the relevant dimensionless numbers are the
Ohnesorge number Oh=m/(srD)1/2, (or the less often used Laplace number La=1/Oh2) and
the ratios r1/r2 and m1/m2. When numerical simulations are performed, spurious currents of
amplitude U are observed. In [14] it was conjectured that the amplitude of the spurious
currents must be proportional to s/m. This is equivalent to having an approximately constant
value of the capillary number Cas=Um/s.

The Reynolds number UDr/m of the spurious currents is then proportional to La=srD/m2.
When La is large, computations become difficult in the authors previous scheme [14] because
the spurious currents develop a kind of turbulence, shaking the droplet in a kind of
Zitterbewegung. However, in this new scheme with pressure correction, two interesting features
are observed. First there is remarkable constancy of Cas with Oh, indicating that spurious
currents are very predictable. Second, you can reach high values of 1/Oh2 that were not
previously possible. The final bonus is that increasing the resolution at fixed Oh makes the
spurious currents decrease to machine accuracy.

Table I illustrates the constant character of Ca over a broad range of Ohnesorge numbers.
A 322 Cartesian mesh was used with periodic boundary conditions in the x-direction and
reflecting conditions on the horizontal walls, the density and viscosity ratios are 1, the ratio
between the diameter and the box width is 0.4. The maximum amplitude of the spurious
currents was measured after 250 characteristic time scales (t= tphyss/(Dm)=250). A second
series of tests was performed with the same geometry, for a value of 1/Oh2 of 12000 and
increasing spatial resolutions. Table I also shows a convergence of the method to the

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 775–793 (1999)
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theoretical solution that is faster than second-order in the spatial resolution (the exponent is
approximately 2.75). For the maximum resolution of 2562, the absolute error is of the order of
the machine precision.

The same test was done using the piecewise linear interface calculation (PLIC/VOF) code [8].
Figure 6 shows that without the correction to the pressure gradient, the amplitude of the
spurious currents is independent of the spatial resolution for PLIC/VOF, which results in
spurious currents 105 times stronger than with the markers method for the 2562 case.

4.2. Capillary wa6e

Another simple but important test is the solution of the damped oscillations of a capillary
wave. The linear theory for the small amplitude oscillation of an interface between two inviscid
fluids of equal density s in an unbounded domain, gives the dispersion relation

v0
2=

sk3

2r
, (34)

where k is the wavenumber [25].

4.2.1. Normal-mode analysis. The normal-mode analysis for an interface between two viscous
fluid may be found for instance in Lamb [26]. For small amplitude perturbations, and when
the viscosities and densities of both fluids are the same we have the dispersion relation

v2=
sk3

2r
(1−k/q)=v0

2(1−k/q), (35)

where

Figure 6. Amplitude of the spurious currents versus spatial resolution for the PLIC method without pressure
correction and the current method.
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q=
k2− irv/m . (36)

which gives the viscous correction to the inviscid case (34) and the damping ratio of the
amplitude. Eliminating w between (35) and (36) one finds that q is a root of the quartic
equation

q(q−k)(q+k)2= −
sk3r

2m2 , (37)

which can be solved numerically.

4.2.2. Initial-6alue problem. As will be shown from the numerical simulations, this normal
mode analysis is not suitable for the study of the related initial-value problem. As shown
by Prosperetti et al. [27,28], an analytical solution (given in Appendix B) exists for the
initial-value problem in the case of the small-amplitude waves on the interface between two
superposed viscous fluids, provided the fluids have the same dynamic viscosity.

4.2.3. Comparison with the numerical simulations. The test case for the capillary wave is a
square box divided in two equal parts by a sinusoidal perturbation. The wavelength is
equal to the box width. The boundary conditions are free-slip on the top and bottom walls,
periodic along the horizontal axis. The ratio between the initial interface perturbation H0

and the box height is 0.01. Let Oh=1/
3000, the non-dimensional viscosity e=nk2/v0:
6.472×10−2, and the two fluids densities are the same. Figures 7 and 8 shows the evolu-
tion of the amplitude with time for the numerical solution and both the normal-mode and
initial-value analytical solutions. The normal-mode curve is obtained using H0 exp(ivt %/v0),
where v is given by eq. (35).

In order to study the spatial convergence of the method, this test has been repeated
for resolutions of 82, 162, 322 and 642. Table II summarizes the results. Good convergence
is obtained and a relative error of order 10−2 from a spatial resolution of 322 com-
pared with the initial-value analytical solution of Prosperetti. Moreover, treated here is the
case of a bounded domain of aspect ratio h/l=1/2 where h is the half height of the
computational box and l=2p/k the wavelength. The analytical solution is given in the
infinite depth case and should be corrected with a term of order cotanh(kh)=cotanh p=
1.0037.

The previous test was performed with a density ratio of 1. Table III illustrates the results
for a density ratio of 10.

4.3. Rayleigh–Taylor instability

In order to illustrate the capability of this method to deal with more complex cases, the
authors present here a classical test. The original version of this computation has been
performed by Puckett et al. [9,29] using a VOF-type method. A 1 m wide, 4 m high
rectangular domain is discretized using a 64×256 grid. The fluid densities are 1.225 and
0.1694 kg m−3. The fluid viscosities are 0.00313 kg m−1 s−1. The interface between the
fluids is an initially sinusoidal perturbation of amplitude 0.05 m. Figure 9 shows the
evolution of the interface at times 0, 0.7, 0.8 and 0.9 s. The maximum mass fluctuation of
the method is approximately 0.14%, which is larger than the observed variation for a
VOF-type method (about 0.01%). The interface evolution compares well with the results of
Puckett et al. [29] and with the simulation done using the VOF/PLIC algorithm of Refer-
ence [8] on a 128×512 grid (Figure 10).
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Figure 7. Time evolution of the amplitude of a capillary wave in the viscous case. The front-tracking method is used
on a 1282 square grid. The theoretical curves are obtained from a normal-mode analysis and from the exact solution

to the initial-value problem in the linearized viscous case (see Appendix B).

Figure 8. Close up of the previous figure illustrating the difference between the normal-mode and initial-value
solutions.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 775–793 (1999)



S. POPINET AND S. ZALESKI788

Table II. Evolution of the relative error between numerical computations and
the normal-mode and initial-value analytical solutions

Grid size Error/initial value Error/normal-mode

0.2972 0.307782

162 0.0778 0.0959
0.0131322 0.0332
0.0098 0.0307642

0.0065 0.02801282

The relative error is the rms of the differences between the solutions divided by the
amplitude of the initial perturbation. The authors compare the solutions for the first 25
non-dimensional time units. r1=r2, non-dimensional viscosity e:6.472×10−2, Oh=1/

3000.

Table III. Evolution of the relative error between numerical computations and
the initial-value analytical solution

Error/initial valueGrid size

0.359382

162 0.1397
0.0566322

0.0264642

0.01481282

r1=10r2, e:4.799×10−2, Oh1=1/
3000, Oh2=1/
30 000.

Figure 9. Rayleigh–Taylor instability on a 64×256 grid using the front-tracking algorithm.
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5. CONCLUSIONS

In summary, the authors have presented a front-tracking numerical algorithm able to deal
accurately with surface tension. For the case of a stationary bubble, the method shows a
convergence to the theoretical solution that is faster than second-order in the spatial resolu-
tion. For reasonable mesh sizes, the spurious currents usually present when using fixed grids
can then be reduced to machine accuracy. Good results are obtained for the test case of a
capillary wave with viscous damping. The authors obtain very good agreement with Pros-
peretti’s solution to the linearized initial-value problem. The relative error for the time
evolution of the amplitude is smaller than 10−2 when using 32 or more points per wavelength.
The method is robust and remains accurate even for very small Ohnesorge numbers (10−3 or
less). The implementation of the method leads relatively easily to a fast code: as a fixed regular
grid is used, the Navier–Stokes algorithm is efficient. Moreover, due to its one-dimensional
nature, the surface-tracking part is negligible in terms of computational time.

The marker representation gives a precise location of the interface and is therefore
well-suited for the study of small scale effects.

It is noted, however, that as of yet, a reconnection mechanism to deal with topology changes
has not been implemented. Consequently, the method conserves the small filamentary struc-
tures even for low resolutions. The authors are currently studying a reconnection mechanism
based on a physical representation of the short-range interactions between interfaces. Whereas
VOF-type methods introduce an arbitrary reconnection length (usually the mesh spacing), this
method should provide a physical criterion for the reconnections. This advantage of explicit

Figure 10. Rayleigh–Taylor instability on a 128×512 grid using the VOF/PLIC algorithm.
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front-tracking in providing a potentially better answer to the reconnection problem was
recognized in Reference [12].

The main idea of this paper is to take into account the fact that the interface is a sharp
discontinuity when building the surface tension representation. This idea could be generalized
to include the other singularities of the equation, of which the most prominent example is the
jump in density. It remains to be seen whether such an improvement will be as easy to obtain
as in the case of surface tension.

An interesting comment on this approach is that it runs counter to several attempts to deal
with singularities in the equations by smoothing them, i.e. distributing them over neighboring
mesh nodes through appropriate smoothing kernels [12,30,31].

The ideas developed in this paper can be generalized to different types of Navier–Stokes
solvers and are not limited to projection methods on Cartesian grids. In particular, the authors
emphasized the necessity of a precise and consistent discretization of the surface tension and
of the associated pressure jump. This requires the precise knowledge of the interface position
relative to the underlying grid that front tracking usually provides.

It is important to note that this approach could and should be applied to the discretization
of all the gradient terms with rapid variations across the interface, in particular the viscous
stress tensor for high viscosity contrasts.

Numerous applications require an accurate representation of the surface effects: motion of
drops of water in air [32,33], wave breaking [34] or sono-luminescence [35]. Moreover, the
exact description of the interface position allows an easy implementation of the membrane
models found in biological mechanics [36,37] and of the effect of surfactants [38]. An
interesting study could also be a detailed subgrid modeling of the reconnections between
interfaces [39].

The authors are currently working on an axisymmetric version of the code. In the future,
they plan to develop a fully three-dimensional front-tracking algorithm.

APPENDIX A. ESTIMATION OF THE VOLUME FRACTION

In the case of flows with varying density and/or viscosity between the phases, there is a need
to estimate the volume fraction C defined in Equation (15). Then, you have to create the new
volume fraction field corresponding to the new parametric interpolation of the interface.

Figure 11. Computation of the volume fraction.
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Consider a cell V crossed by the interface. Phase 1 occupies a subset S (Figure 11). The
authors wish to compute the volume fraction Cij= �S�/�V�. This problem can be reduced to the
computation of a circulation along a parametric curve as illustrated below. Following Stokes
theorem, if P and Q are two functions of the space co-ordinates (x, y), it can be written7

(S
P dx+Q dy=

&
S

�(Q
(x

−
(P
(y

�
dx dy, (38)

if P=0, Q=x are chosen, you get7
(S

x dy=
&

S
dx dy, (39)

which can be written using the parametric description of (S. The authors redefine x(s), y(s)
to follow the sum of the interface S and the ‘wet’ boundary of V for s=s1 to s2.& s2

s 1

x(s)y %(s) ds= �S�. (40)

For the third-order polynomial parametric function (x(s), y(s)),

x(s)=axs3+bxs2+cxs+dx, y(s)=ays3+bys2+cys+dy, (41)

thus, the contribution of the interface S to the integral is given by& sD

sA

x(s)y %(s) ds

=
1
2

axays
6+

1
5

(3bxay+2axby)s5+
1
4

(axcy+2bxby+3cxay)s4+
1
3

(bxcy+2cxby+3dxay)s3

+
1
2

(cxcy+2dxby)s2+dxcys, (42)

where the points sA and sB correspond to the intersections with (V, as on the figure. Then, the
circulation along the faces of the cell must be added. In the case of the Cartesian grid, three
useful observations can be made:

Figure 12. Intersection of an interface with a vertical face. Two cases arise depending on the topology of the domain.
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1. As for the horizontal faces 	 x dy=0, only the vertical faces contribute to the circulation.
2. If a vertical face is not crossed by the interface it contributes 	 x dy=x 	 dy=9x, which

is an integer number.
3. A maximum CFL number of 0.5 is imposed. In this case, the variation of the volume

fraction during any time step cannot be larger than 0.5 in any cell. Consequently, it can be
written

cn−0.55cn+15cn+0.5. (43)

If only the fractional part of the circulation c̃ n+1, is computed, then the sought result is given
by cn+1= c̃ n+1+ i, where i is an unknown integer. However, i is uniquely defined by (43) and
can take only four distinct values {−1, 0, 1, 2}.

It is now easy to compute the volume fraction, you just follow the interface as defined by
the list of polynomials. The authors test whether the interface intersects the horizontal and/or
vertical grid lines. The point of intersection is computed using a combination of bisection and
Newton–Raphson methods [23]. If there is no intersection (e.g. segment BC in Figure 11), the
circulation is added along the whole polynomial segment, computed using (42), to the cell
volume fraction c̃. If there are any intersections, compute the circulation for each part of the
polynomial segment and add the circulation to the corresponding cell (segments AB and CD).
When the intersection is on a vertical segment, add the vertical contribution to the circulation
to one cell and subtract it from the neighboring cell (Figure 12). Once all the interface
contributions have been added, use (43) to compute the value of the integer constant i to be
added to get cn+1. With this algorithm, the cases where an interface (or several interfaces)
crosses more than once the same cell are treated implicitly.

Cells that were crossed by the interface at the previous time step have their volume fraction
field updated to 0 or 1 according to whether they now lie outside or inside the domain
respectively. The inequality (43) gives the correct value.

APPENDIX B. INITIAL-VALUE SOLUTION

The authors describe the solution to the initial-value problem [27,28], which they use for
comparisons. They consider here the case of an initial sinusoidal perturbation of amplitude H0,
the two fluids being at rest. If v0

−1 is taken as fundamental time, with v0 given by
v0

2=sk3/(r1+r2), and k−1 as fundamental length, you can set

(t %)=v0t, e=nk2/v0. (44)

Using these non-dimensional time and viscosity, the analytical solution for the non-dimen-
sional amplitude a=H/H0 is given in compact form by

a((t %))=
4(1−4b)e2

8(1−4b)e2+1
erfc(e1/2(t)1/2)+ %

4

i=1

zi

Zi

v0
2

z i
2−ev0

×exp[(z i
2−ev0)(t %)/v0] erfc(zi(t %)1/2/v0

1/2), (45)

where zi are the four roots of the algebraic equation

z4−4b(ev0)1/2z3+2(1−6b)ev0z2+4(1−3b)(ev0)3/2z+ (1−4b)(ev0)2+v0
2=0, (46)

and Z1= (z2−z1)(z3−z1)(z4−z1) with Z2, Z3, Z4 obtained by circular permutation of the
indices. The dimensionless parameter, b is given by, b=r1r2/(r1+r2)2.
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